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Combinatorial methods have made an important impact on Scheme 1. Double-Cuvette ISES

catalyst discovery in recent yedr#lotable examples include the TBADH-cuvette ||l HLADH-cuvett
discovery of catalysts for asymmetric acylafiband Stetter-type JCE o 5 ?H on oH 04: oH o
chemistry20cPd(0)2¢ and Cu(l)-mediatedd allylic alkylations, Ag- Me™ MR~ |Meg™ T M
based carbene insertiéh-eCh-mediated epoxidatio?f,and early AN At | it el
transition-metal-based additions to imirfé&These successes have aoem (N N L soam
spurred interest in catalyst screeni@creens for active lead H™ + [NADPH)  NADP NAD™  (NADH)* H
catalysts, based upon IR thermogragt§fluorescencés— and dye ag. 'reporting' layer 1 " aq. 'reporting' layer 2
formatiorf9bleaching” have been reported. Particularly valuable common organic layer Z_ 7

screens also provide information enantioselectiity.> To predict NN I
k_inetic resolutic_m efficiency in situ, sgveral elegant parallel enan- ® H7& Y.;,__. O.t;no . j’:‘/OH
tiomer competition assays are availatflé.In situ screens for M r Sdhi

organic catalysts that detect product handedness and thereby apply
to enantioselective catalysis (achiral educts) or actual resolutions Table 1. Focused 7 x 7 Chiral Salen Array for

. — - i "~ i a
(racemic educts) are much rarer. One such method has recently=°(!!)—Salen-Mediated HKR of rac-Propylene Oxide

been reported by Morken and employs an isotopically cAf@l *&__&'f‘f y AT ;—: o {5 on| .E::T[f” _,_ﬁ\f
NMR probe substraté. =1 VP M
We have described the use of enzymes to monitor relative ratesr——; - . — - -

. . . . . . . . . +56 +68 +75 +47
in real time for allylic substitution catalys#.In its first iteration, WY, as] as[w] ° | w[Gg] sm[z] ° |
ISES (in situ enzymatic screening) was run in a bilayer, with an o - o

. . . . & 73 15 +1 -
aqueous enzymatic layer reporting on the turnover of an allylic @/(N.. #l es[mm| asleal sa[za] a[zs] ¥ a1 [=3]
ethyl carbonate substrate in an organic layer. An asymmetric, Ni- N.. » e 5

. . . . . 3

(0)-mediated allylic amination was uncovered in the proégss. HH wo[ag] esifar]  * wm * i '

1 vz +57
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which the reporting enzymes provide information on both relative
rate and enantioselectivity. This method differs significantly from

St
Herein, we disclose a second iteration of the ISES technique, in | £
L
|
|

NH,
the first version of ISES: (i) One uses the reporting enzymes to w | o0 wbs] * | bE) sl !
observe the reaction product directly (a chiral 1,2-diol here) rather o e ot |
than a byproduct of catalyst turnover (e.g., EtOH previously); this ffﬁ"” ooz +afzs| ° ' ! ' '
allows one to take full advantage of the chirality in the enzymatic [ "'°r__‘,r\ 3 N N
“sensor”. (ii) Because one wishes to glean information on enantio- | <"*| i j:'@ s S | ercenr| * '
selectivity, as well as relative rates, two reporting enzymes are ks [i7] [i5]

employed, in parallel cuvettes. Two ISES reporting rates are needed agach box provides HKR data for the Co(Hpalen acetate derived
to distinguish the situation in which catalyst A has the same rate frorg the[indicat(essj Saollen- Pre(se)r]lted aredphe (;’/obeed Ofbtlhe 1,2-Pr011)sansedi0|
o ; ; product [+" = and =" = (R)] as predicted by double-cuvette ISE
as catalyst B bL_jt greatfts.selectlwt_y from t.h.e.one Ir_] which the (indigo) and as observed by chiral HPLC (black). Where available, observed
two catalysts display similar enantioselectivities, with catalyst A catalyst S valued® are also provided (enclosed boxes). The cuvette
possessing the greater rate. We term this approach “double-cuvette’®xperiments are run in a bilayer of pH 8.6 buffer over 7.2 M epoxide in
ISES (Scheme 1) CHCls, containing 0.25 mol % catalyst, for £35 min. “Inherent” catalyst
’ L. .. . ee'sare judged by running the HKR in neat propylene oxide, containing
To demonstrate proof of principle, we chose the hydrolytic kinetic 0.55 equiv of HO, also at 0.25 mol % cataly$These catalysts gave ISES
resolution (HKR) of {&)-propylene oxide, a reaction known to be  signals< 20 mAbs min over 35 min.'This catalyst was tested at 0.05

- . mol %, as it was especially fastThe catalysts derived frorig and 4e
catalyzed efficiently by chiral Co(lllysalen complexes from the displayed ISES rates of 14.9 and 18.1 mAbs Thimespectively, in the

pioneering work of JacobséhTo provide an information-rich data ~ HLADH cuvette, over 35 miniDifficulty was encountered in synthesizing

set requires that the two reporting enzymes display differietatally appreciable quantities of these salens. *The 3,5-dinitrobenzoate counterion
opposite-enantiomeric preferences. Screening revealed that alcohol *@° employed for these Co(lll) catalysts.

dehydrogenase from horse liver (HLADH) and frohnermoa- terpenoid, amino acid, and carbohydrate skeletons) with sterically
naerobium brockii(TBADH) fulfill this criterion. The former and electronically diverse “salicylaldehydes”.

enzyme prefer§S)-1,2-propanediol? whereas the latter favors the In the experiment, each Co(lll)-salen catalyst (at 0.25 mol %) is
(R)-antipodet3 placed in a lower organic layer (CH{ANd expoxide, 30QL total

A focused 7x 7 “salen” array was designed (Table 1) so as to volume) in each of two parallel cuvettes. Aqueous reporting layers
explore the interplay of novel chiral diamine scaffolds (from containing TBADH/NADF (cuvette 1) and HLADH/NAD
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